Проектирование
Заполните все необходимые поля. Проставьте на чертеже гидроцилиндра свои размеры, укажите основные параметры.
Пользоваться нашим интерактивным калькулятором забавно и просто как 1-2-3. Попробуйте сами!
Для двух сечений потока 1—1 и 2—2 реальной жидкости (рисунок 1) при установившемся плавно изменяющемся движении уравнение Бернулли имеет вид:
z1 + p1/γ + α1υ12/(2g) = z2 + p2/γ + α2υ22/(2g) + Σhп (1)
где z — ордината, определяющая высоту положения центра выбранного сечения над произвольной горизонтальной плоскостью сравнения 0—0; p/γ — пьезометрическая высота; z + p/γ = Hп — гидростатический напор; αυ2/(2g) = hv — скоростная высота, или скоростной напор; α — коэффициент Кориолиса, учитывающий неравномерность распределения скоростей в живом сечении потока.
Сумма трех членов:
z + p/γ + αυ2/(2g) = H
есть полный напор; Σhп — потеря напора между выбранными сечениями потока. Вместо выражения (1) можно написать:
H1 = H2 + Σhп
Все члены уравнения Бернулли в формуле (1) имеют линейную размерность и в энергетическом смысле представляют удельную энергию жидкости, т. е. энергию, отнесенную к единице веса жидкости.
Так, z и p/γ - удельная потенциальная энергия соответственно положения и давления;
z + p/γ - удельная потенциальная энергия жидкости;
αυ2/(2g) - удельная кинетическая энергия, выраженная через среднюю скорость потока в данном
сечении. Сумма всех трех членов
z + p/γ + αυ2/(2g) = H представляет полный запас удельной механической энергии жидкости в данном сечении потока;
Σhп - удельная механическая энергия, затрачиваемая на преодоление сопротивления движению жидкости
между сечениями потока и переходящая в тепловую энергию, которая состоит из следующих слагаемых:
Σhп = Σhдл + Σhмест
где Σhдл — потери энергии (напора) на трение по длине; Σhмест — местные потери энергии (напора).
Если уравнение (1) умножить на γ, то получим:
γz1 + p1 + γα1υ12/(2g) = γz2 + p2 + γα2υ22/(2g) + γΣhп (2)
Члены уравнения (2) имеют размерность давления и представляют энергию, отнесенную к единице объема.
Если уравнение (1) умножить на g, то получим
gz1 + p1/ρ + α1υ12/2 = gz2 + p2/ρ + α2υ22/2 + gΣhп (3)
Члены уравнения (3) имеют размерность м2/с2 и представляют энергию, отнесенную к единице массы.
РИСУНОК 1
На рисунке 1 приведена диаграмма уравнения Бернулли для потока реальной жидкости. Здесь 0—0 — плоскость сравнения; N—N — плоскость начального напора; Н—Н — напорная линия, или линия полной удельной энергии. Падение ее на единицу длины представляет гидравлический уклон J; Р—Р — пьезометрическая линия, или линия удельной потенциальной энергии. Падение ее на единицу длины представляет пьезометрический уклон Jп.
Так как общий запас удельной энергии вдоль потока непрерывно уменьшается, линия Н—Н всегда нисходящая, а гидравлический уклон всегда положительный (J>0). Пьезометрическая линия может быть и нисходящей, и восходящей (последнее имеет место на расширяющихся участках, когда средняя скорость потока уменьшается), поэтому пьезометрический уклон может быть и положительным (J>0), и отрицательным(J<0).
На участках с равномерным движением жидкости, где имеют место только потери напора на трение по длине, линии Н—Н и Р—Р представляют взаимно параллельные прямые, поэтому J = Jп =hдл/L. В этом случае потеря напора может быть определена по разности гидростатических напоров:
hдл = (z1 + p1/γ) - (z2 + p2/γ)
РИСУНОК 2
Для горизонтальных участков потоков (z1=z2) или в случае, если плоскость сравнения 0—0 проведена по оси потока (z1=z2=0) (рисунок 2), потеря напора на трение по длине может быть определена непосредственно по разности показаний пьезометров:
hдл = (p1 — p2)/γ
На рисунке 3 показаны линия энергии Н—Н и пьезометрическая линия P—P для трубопровода переменного сечения, соединяющего два открытых резервуара.
РИСУНОК 3
Источник: Вильнер Я.М. Справочное пособие по гидравлике, гидромашинам и гидроприводам.
![]() | Проектирование и изготовление нестандартных гидроцилиндров различного назначения, любой сложности, а также изготовлении серийных гидроцилиндров для строительно-дорожной, коммунальной и сельскохозяйственной техники. Каталог гидроцилиндров >> |
![]() | Телескопические гидроцилиндры для подъема кузовов самосвалов КАМАЗ, ГАЗ, ЗИЛ и тракторных прицепов 2ПТС-4, 2ПТС-4М, 1ПТС-9, 2ПТС-6, 1НТС-10. Каталог телескопических гидроцилиндров >> |
![]() | Гидрораспределители к тракторам, экскаваторам, бульдозерам, сельхозтехники, автомобилям. Среди гаммы реализуемой продукции - Р80, Р160, Р100, Р200, ГГ 420, ГГ 432, АТЭК, РХ 346, РС 20, РС 25. Каталог гидрораспределителей >> |
![]() | Гидромоторы и гидронасосы аксиально-поршневые нерегулируемые типа 210, 310. Гидромоторы и гидронасосы регулируемые 303, 311.224М, 313. Гидромашины. Каталог гидронасосов и гидромоторов >> |
![]() | Механизмы рулевые гидравлические предназначены для самоходных колесных строительно-дорожных машин катков, фронтальных погрузчиков, грейдеров и др. Каталог насосов-дозаторов >> |
![]() | Гидравлические шестеренные насосы. НАСОСЫ НШ, НШ10, НШ 10, НШ-10, НШ32, НШ 32, НШ-32, НШ50, НШ 50, НШ-50, НШ71, НШ 71, НШ-71, НШ100, НШ 100, НШ-100. Каталог насосов шестеренных >> |
![]() | Гидроусилители рулевого управления. ГУР Т-40, ГУР К-700, ГУР ЗИЛ, ГУР Камаз, ГУР МАЗ, ГУР МТЗ-80, ГУР Т-150, ГУР Урал, ГУР ЮМЗ-6Л, Гидроусилитель Т-70, Гидроусилитель ДТ-75. Каталог гидроусилителей рулевого управления >> |